SMIL  1.1.1-dev
Morphological Residues

Detailed Description

In Mathematical morphology, a Residue is the symetrical difference between an image and some transformation or between two transformations.

+ Collaboration diagram for Morphological Residues:

Functions

template<class T >
RES_T gradient (const Image< T > &imIn, Image< T > &imOut, const StrElt &se=DEFAULT_SE)
 gradient() - Morphological gradient More...
 
template<class T >
RES_T gradient (const Image< T > &imIn, Image< T > &imOut, const StrElt &dilSe, const StrElt &eroSe)
 gradient() - Morphological gradient More...
 
template<class T >
RES_T topHat (const Image< T > &imIn, Image< T > &imOut, const StrElt &se=DEFAULT_SE)
 topHat() - Top-Hat More...
 
template<class T >
RES_T dualTopHat (const Image< T > &imIn, Image< T > &imOut, const StrElt &se=DEFAULT_SE)
 dualTopHat() - Dual Top-Hat More...
 

Function Documentation

◆ gradient() [1/2]

RES_T smil::gradient ( const Image< T > &  imIn,
Image< T > &  imOut,
const StrElt se = DEFAULT_SE 
)

gradient() - Morphological gradient

: The morphological gradient of an image is defined as the difference between its dilation and its erosion :

\[ gradient(im) = \epsilon(im) - \delta(im) \]

See also
[16] P. Soille, Morphological Image Analysis, 2003, p. 85-89, 127-130
Parameters
[in]imIn: input image
[out]imOut: output image
[in]se: structuring element

◆ gradient() [2/2]

RES_T smil::gradient ( const Image< T > &  imIn,
Image< T > &  imOut,
const StrElt dilSe,
const StrElt eroSe 
)

gradient() - Morphological gradient

: The morphological gradient of an image is defined as the difference between its dilation and its erosion :

\[ gradient(im) = \epsilon(im) - \delta(im) \]

This function allows the use of different structuring elements for the dilation and erosion.

Parameters
[in]imIn: input image
[out]imOut: output image
[in]dilSe: dilation structuring element
[in]eroSe: erosion structuring element

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

◆ topHat()

RES_T smil::topHat ( const Image< T > &  imIn,
Image< T > &  imOut,
const StrElt se = DEFAULT_SE 
)

topHat() - Top-Hat

Top-Hat or Open top-hat or White top-hat is defined as the difference between the image and its opening :

\[ WTH(im) = im - \gamma(im) \]

See also
[16] P. Soille, Morphological Image Analysis, 2003, p. 121-127
Parameters
[in]imIn: input image
[out]imOut: output image
[in]se: structuring element

◆ dualTopHat()

RES_T smil::dualTopHat ( const Image< T > &  imIn,
Image< T > &  imOut,
const StrElt se = DEFAULT_SE 
)

dualTopHat() - Dual Top-Hat

Dual Top-Hat or Close top-hat or Black top-hat is defined as the difference between the closing of the image and itself :

\[ BTH(im) = \phi(im) - im \]

See also
[16] P. Soille, Morphological Image Analysis, 2003, p. 121-127
Parameters
[in]imIn: input image
[out]imOut: output image
[in]se: structuring element