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SKIZ, or Skeleton by Influence ZonesSKIZ, or Skeleton by Influence Zones

Definition (C.Lantuejoul) Consider a compact  set X of  R2 . 
• The zone of influence of a component Xi of X is the set of points of  

the plane that are closer to Xi than to any other component.
• The SKIZ is then defined as the boundary of all zones of influence.

Algorithm
• In the digital case, the SKIZ is constructed in two steps:

1) Thinning of the background (with L in the hexagonal case)
2) Pruning of the thinned transform (with E in the hexagonal case)

Skiz

Influence zone
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Let Y = ∪{ Yi , i∈Ι } be a set of the Euclidean 
plane made of of I compact connected 
components, and  included in a compact set X.

• The geodesic zone of influence of a 
component Yi in X, is formed by all points of 
X whose geodesic distance to Yi is smaller 
than to any other component  of Y

zi (Yi \ X) = {a∈ X , ∀ k ≠ i, dX(a, Yj) ≤dX(a,Yk)}

where the geodesic distance from point a to 
set Y is the inf of the geodesic distances from 
a to all points of Y.

• The geodesic SKIZ is then the boundaries  of 
all geodesic zones of influence.

Geodesic SKIZGeodesic SKIZ

An example of geodesic SKIZ

SKIZ (Y)

Y3

Y2
Y1

X

ziX (Y1)
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Properties of the SkizProperties of the Skiz

In the following, we assume that set X ⊆ R2 is finite union of  I
disjoint compact connected components Ki . Any image of [0,1] 
under a bi-continuous bijection  is called a simple arc.The two 
properties which follow are due to C.Lantuejoul.

• Fineness
The set skiz(X) is a locally finite union of simple arcs, which 

generate exclusively loops (including possible points at the infinity). 

• Continuity
Let Xn = { ∪ Ki,n } be a sequence of the above type, where each 

compact set Ki,n converges towards compact set Ki , itself  disjoint 
from the other limits  Kj , j ≠ i,  j ∈ I  i.e.

Xn = ∪∪∪∪ Ki,n →  →  →  →  X = ∪∪∪∪ Ki

then Skiz (Xn)  →  →  →  →  Skiz (X) .
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The Two Problems of Segmentation (I)The Two Problems of Segmentation (I)

• When one wants to segment a set, the 
first question which arises is : 

" into how many pieces ? "  
(in case of figure 1,   6 or 7 particles?)  

• One can decide and indicate, 
manually, the  supposed locations of 
the centres.

• Alternatively, one can trust in a 
marking technique. However, the 
results risk to vary with the method 
(here, between 6 and 7).

• In all cases, this first step is a choice.

• When one wants to segment a set, the 
first question which arises is : 

" into how many pieces ? "  
(in case of figure 1,   6 or 7 particles?)  

• One can decide and indicate, 
manually, the  supposed locations of 
the centres.

• Alternatively, one can trust in a 
marking technique. However, the 
results risk to vary with the method 
(here, between 6 and 7).

• In all cases, this first step is a choice.

Figure 1 :

A set and its
ultimate erosion

Ultimate erosion 
after filtering 
of the set.
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The Two Problems of Segmentation (II)The Two Problems of Segmentation (II)

• Given a certain choice of markers, (here, 
the conditional bisector) the segmentation 
lines may be optimised :

- A coarse expression is obtained by taking 
the exoskeleton of the markers (the shape 
of the set is then just ignored)

- One can partly take this shape into 
account by dilating each marker by a disc 
equal to the number of steps necessary to 
reach the ultimate marker 

- Finest procedure: calculate the geodesic 
skiz of eroded n° i inside eroded n° i-1, 
as i varies from the ultimate erosion to 
zero, and take the union of these skiz's.

• Given a certain choice of markers, (here, 
the conditional bisector) the segmentation 
lines may be optimised :

- A coarse expression is obtained by taking 
the exoskeleton of the markers (the shape 
of the set is then just ignored)

- One can partly take this shape into 
account by dilating each marker by a disc 
equal to the number of steps necessary to 
reach the ultimate marker 

- Finest procedure: calculate the geodesic 
skiz of eroded n° i inside eroded n° i-1, 
as i varies from the ultimate erosion to 
zero, and take the union of these skiz's.

Exoskeleton 
of the 
markers.

Successive
geodesic
skiz's.
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Distance function (I)Distance function (I)

Definition :
The distance function is an intermediate step between sets and functions.

• When a distance has been defined on E, it is possible to associate, with 
each set X, the subset Xλ composed of all those points of X whose 
distance to the boundary is larger than λ.

• As λ increases, the subsets Xλ are included within each other (and 
parallel in the Euclidean case). They can be considered as the horizontal 
thresholds of a function whose grey level is  λ at point x if x is at 
distance λ to the boundary. This function is called Distance Function.

1 2 3 4

X
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Distance Function (II)Distance Function (II)

Properties
• Since the distance is characterised by the disks δλ of size λ, the 

subsets Xλ are nothing but the erosions of X by these disks. More 
precisely:

i )     λ ≥ µ  ⇒  δλ ≥ µ  ⇒  δλ ≥ µ  ⇒  δλ ≥ µ  ⇒  δ λλλλ ≥ δ≥ δ≥ δ≥ δµ    µ    µ    µ    

ii )     δδδδλ λ λ λ δδδδµ  µ  µ  µ  ≤ δ≤ δ≤ δ≤ δλ + µ             λ + µ             λ + µ             λ + µ             λ , µλ , µλ , µλ , µ ≥ 0    ≥ 0    ≥ 0    ≥ 0    ( triangular inequality )
iii ) ∧∧∧∧{δδδδλλλλ , λ, λ, λ, λ ≥ 0}  =  ≥ 0}  =  ≥ 0}  =  ≥ 0}  =  Id.                   ( Identity operator )
iv ) x ⊆⊆⊆⊆ δ δ δ δ (y)   ⇔     ⇔     ⇔     ⇔     y ⊆⊆⊆⊆ δ δ δ δ (x)           ( symmetry )

• Conversely, each family of dilations which fulfils these four relations 
defines a  distance d which is characterised by the relation

d(x,y) = Inf {λ :λ :λ :λ : x∈δ∈δ∈δ∈δ λλλλ ((((y) ; y∈δ∈δ∈δ∈δ λλλλ ((((x) }
Then δλ (y) is the disc of centre y and radius  λ (J. Serra) .
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Distance Function (III): an ExampleDistance Function (III): an Example

Set  X Corresponding Distance Functions

Comment : Figure b shows the supremum of both distance functions of X and Xc
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Distance function (IV): another ExampleDistance function (IV): another Example

The journey of  Men and Women Tingary (Papunya, Australia)
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Fine Segmentation and Distance FunctionFine Segmentation and Distance Function

• The successive eroded versions of a 
set X generate the horizontal 
sections of its distance function ;

• therefore the finer previous 
segmentation, by means of geodesic 
skiz's, comes back to build up the 
watershed lines of this distance 
function (at least when the les
markers are the ultimate erosions).

• By duality, they also appear to be 
the valleys lines on the inverse 
function.

• The successive eroded versions of a 
set X generate the horizontal 
sections of its distance function ;

• therefore the finer previous 
segmentation, by means of geodesic 
skiz's, comes back to build up the 
watershed lines of this distance 
function (at least when the les
markers are the ultimate erosions).

• By duality, they also appear to be 
the valleys lines on the inverse 
function.

Ultimate erosions

Watershed lines

Minima
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Watershed Lines for Numerical FunctionsWatershed Lines for Numerical Functions

The approach developed for the 
distance functions applies as 
well to any numerical image
(S.Beucher), and the analogy 
between gray levels and altitudes 
still justifies the terms of 
watersheds and catchment
bassins .

However, it is less matter of rain 
water running down to the 
minima than of  water that
springs from the minima .

surface of
the function

Minima

Catchment
BassinsWatershed 

Lines

topographical patterns
of a numerical image

N.B. Beucher-Lantuejoul’s algorithm is presented below for the sake of pedagogy.
But it is not the unique one, it has been improved by P.Soille and L.Vincent. Another 
implementation, based on hierarchical queues, due to F.Meyer is more  effective.
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• Suppose that holes are made in each local minimum and that the surface is 
flooded from these holes. Progressively, the water level will increase.

• In order to prevent the merging of water coming from two different holes, a 
dam is progressively built at each contact point.

• At the end, the union of all complete dams constitute the watersheds.

Construction of  the Watersheds by Flooding (I)Construction of  the Watersheds by Flooding (I)

Minima

Dams in construction

Water level
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Construction of  the Watersheds by Flooding (II)Construction of  the Watersheds by Flooding (II)

Flooding algorithm (S.Beucher, Ch Lantuejoul)
• Let m be the minimum of  function f. Put:

X0 = { x:  f(x) = m},  
Xk = { x:  f(x) ≤ m+k } with  1 ≤ k ≤ max f

• Denote by Y1 the geodesic zones of influence 
of X0 inside X1. Distinguish three types of 
connected components of X1 

– those, X1,1  that do not contain points of X0 
: then they do not belong to  Y1 

– those, X1,2 that contain a unique c.c. of X0
: then they fully belong to  Y1 

– those, X1,3 that contain several c.c. of X0 : 
Y1 recovers then X1,3 minus the branches 
of its geodesic skiz.

Flooding algorithm (S.Beucher, Ch Lantuejoul)
• Let m be the minimum of  function f. Put:

X0 = { x:  f(x) = m},  
Xk = { x:  f(x) ≤ m+k } with  1 ≤ k ≤ max f

• Denote by Y1 the geodesic zones of influence 
of X0 inside X1. Distinguish three types of 
connected components of X1 

– those, X1,1  that do not contain points of X0 
: then they do not belong to  Y1 

– those, X1,2 that contain a unique c.c. of X0
: then they fully belong to  Y1 

– those, X1,3 that contain several c.c. of X0 : 
Y1 recovers then X1,3 minus the branches 
of its geodesic skiz.

X1.1

c.c. of X0

X1.3

X1.2

c.c. of X0

skiz ( X0 \ X1 )

Evolution of the flooding
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Construction of  the Watersheds by Flooding (III)Construction of  the Watersheds by Flooding (III)

• Since the X1,1 's are minima  which appear at level 1, we have to 
incorporate them to the flooding process. Thus we replace

X1       by    Y1∪X1,1

• ...and we iterate. The geodesic zones of influence 
– Y2 of      Y1∪X1,1 inside  X 2 are calculated ;
– They provide markers  Y2∪X2,1 ;   etc...

• The  process ends when level k = max f is reached. Then one has :
Ymax f =   union of the  basins;
[ Ymax f ]c  =  Watershed lines.
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An example of Watershed by Flooding (I)An example of Watershed by Flooding (I)

Initial image. Minima (1), and
next level (2).

2

1

Geodesic skiz of 
(1) into (2)

(in white lines).
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An example of Watershed by Flooding (II)An example of Watershed by Flooding (II)

Level 2, minus
the first skiz , 
and level 3.

Second skiz
(note that it prolongates 

the first one).

Final watershed
(The result is significant

in spite of the small 
number of gray levels).
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On distance function :
• The concept of parallel sets (that is Euclidean spherical dilates) appears in 

Steiner{STE40} in 1840. But the distance function was introduced by 
G.Matheron in 1967 for the Euclidean case {MAT67}, and by A.Rosenfeld in 
1968 for digital sets {ROS68}. Literature provides a large number of 
algorithms to compute this function {MEY89a},{VIN90},{SOI91} and
{DAN80}. For the dilation based distances, see {SER88, ch2}. 

On Watersheds :
• Watershed transformation was originally designed for segmentation of gray

tone images by S.Beucher and Ch.Lantuejoul in 1979 {BEU79}. During the 
eighties, S.Beucher and F.Meyer proposed the concepts of markers and of 
swamping, and published them in {BEU90} and {MEY90}.The most  efficient 
algorithm for watershed implementation was found by F.Meyer {MEY91} 
(hierarchical queues). See also {SER98} (hyper-connections) and {ALB97}    
(enlargements) .   
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